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In the contex of two-phase film mass transfer, we carry out a theoretical investigation of the chemisorption 

of a gaseous-mixture component in wetted plane-parallel channels at large chemisorption capacities of an 

absorber. 

The problem of extracting a gaseous-mixture component (in particular, CO2) by liquid absorbers (for 

example, by solutions of such amines as monoethanolamine, diethanolamine, etc.), provided this component enters 

into a second-order chemical reaction, was set up in a general form previously [1 ]. For the sake of definiteness, a 

steady-state hydrodynamic section of a vertically wetted channel (of width 2R) was considered, in which a gas and 

a thin liquid film (of thickness h) moved in the regime of descending direct flow. 

With the degree of solution carbonization a _< 0.5, an irreversible reaction between CO2 and amine 

(monoethanolamine) follows the scheme [2, 3] 

CO 2 + RNH 2 * RNHCOO- + H + , (1) 

where RNHCOO- is the carbamine ion; R = C H 2 - C H 2 - O H -  is the neutral group. 
The problem is treated on the basis of two-phase mass-transfer considerations: an equation of convective 

diffusion in a gas for COx and corresponding transfer equations for [COx ] and [RNH2 ] in a liquid with volumetric 

sources _k [CO2 ] [RNHx ] are solved on condition of conjugation of fluxes and concentrations at the phase interface. 

Taking into account the fact that the following relationship exists between the concentrations of RNH2 and 

RNHCOO- [4, 51 

[RNH2] = N '  - 2 [RNHCOO- ], (2) 

in the liquid phase it is possible to consider the diffusion equation either for [RNH2] or for [RNHCOO- ] with 

sources of the form _k [CO2] (N ' -2  [RNHCOO- ]), where the minus sign holds for [RNH2] and the plus sign for 

[RNHCOO- ]. Both these approaches are equivalent; however, for the convenience of further investigation we shall 
examine the latter. 

A system of Cartesian coordinates (x, y) is selected so that the conditions y = 0, y =- R--h,  and y = R are 

satisfied at the channel center, on the film surface, and on one of the walls, respectively, whereas the equality x = 

0 holds in the inlet section of the channel. In [1 ], the problem considered is formulated rather generally in a 

hydrodynamically steady-state section; moreover, the velocity distributions in the phases U'g(y) and Uiiq(Y), as well 

as the specific values of the coefficients of transverse diffusion Dg and Dliq, depend on the regime of motion: laminar 

or turbulent [2, 3 ]. An important case in practice is considered, when the input concentration of amine N' is much 
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in excess of the concentration in the liquid phase kCo, which is in cquilibrium with lhe input concentration of the 

gas Co. If we introduce the ratio of these concentrations N, then 

N = N >> 1 . (3) 
2kC o 

In [6 ], it was shown that, on satisfaction of condition (3), a change in the concentration of amine becomes 

noticeable at rather large distances from the inlet section of the channel: 

(k N 'x)/Oli q >> 1 , (4) 

where the overbar denotes the average value of the corresponding quantity, in the given case, of the liquid velocity. 

This means that it is sufficient to investigate absorption, complicated by the second-order chemical reaction, at 

distances from the inlet that satisfy inequality (4). Otherwise, the interaction between CO 2 and amine can be 

considered as a chemical reaction of the pseudofirst order, whose solution is known [7]. Let us introduce the 

dimensionless coordinates and functions according to the following formulas [1 ]: 

y =  R -  hyg, y =  R -  hYli q,  x =  hPeli qx  = R Pegx , 

s , i f 

C'g = C O Cg (x", yg) , Cli q = kC 0 Cli q (x', Yliq), C = ( N / 2 )  C (x ,  Yliq) • 

In [7 ], it was shown that,  on satisfaction of conditions (3) and (4), one can neglect the convective terms 

in the transfer equation for CO2 and the source term in the corresponding equation for carbamine. Physically, this 

means that at such lengths the interaction between C02 and amine occurs in the so-called regime of fast reaction 

[2, 3 ] when the entire carbonic acid, penetrating through the phase interface, transforms to a bound state (of the 

form [RNHCOO-  ]). Moreover, in the region of the basic change in [CO2 ], the concentration of [RNHCOO-  ] can 

be considered constant and equal to its value at the phase interface. In this case, the profile of [C02 ] in the film 

is expressed by the analytical relation 

i 

f i t  q ( x ,  Yliq) = Cgs (x)  
cosh [aYliq~ 1 - C s ( x )  1 

cosh Ia ~ 1 - Cs(x  ) l 
(5) 

where a 2 = k.N'h2/Dliq is the chemisorption parameter. 

Using formula (5), in [1 ] the two-phase chemisorption problem was reduced to an equivalent two-phase 

diffusion problem for determining Cg and C with nonlinear conditions at the phase interface. In dimensionless form 

this problem can be formulated as follows: 

oc~ = o_~ oc= oZc 
" 2 ' 2 

OXg Oyg Ox' OYli q 

(6) 

(O0~lCiq) = P l i q s  ~ / 1 -  Cs ( x ) t a n h  (atanhX/I- Cs(a) ' (X))C'gs' (7) 

(0c ] = 
Oyg)s - Pg ~ 1 - C s (x) tanh (atanh ~/ 1 (a)- Cs (xi-) Cgs (8) 

when yg = Yliq = 1 ; 
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when yg = Yliq = 0 

oy.) =o. toy,,.)--o 

C g = l ,  C = 0  

when x' = x" = 0. The parameters Pliq and Pg are equal to 

a 
Pliq - ~ tanh ( a ) ,  Pg - efl2a tanh (a) = (eNfl 2) Pliq, 

(9) 

(1o) 

(11) 

f 

e = Uliq hk_ , f12 = __R Peg 

RUr h Peli q 

Over the stretch a2x ' >> 1 (the conditions are equivalent to Eq. (4)),  virtually the whole of the dissolved 

carbonic acid is in a chemically bound state [7]. Consequently,  the dimensionless integral equation of material 

balance coincides in form with the corresponding equation for two-phase physical absorption. With account for the 

substitution e ~ eN a n d  Cli q =~ C,  

I - -  (l  - C g )  = e N - C -  E N Z ,  (12) 

where 

1 I 

-Cg = fo Ug Cg dyg, X = fo U l i q C l i q d Y l i q  " 

Physically, the functions Z(x) and I(x) are the dimensionless integral diffusion fluxes from the side of the 

gas and liquid, while the parameters,  e and eN are the absorption and chemisorption factors, respectively, for 

extended packing elements [3 ]. The  parameters eft and eflN have respectively the same sense for short  channels  

[8 ]. Formally, the solution of problem (6)-(10) depends on four dimensionless parameters,  e, fl, N, and a (or on 

their independent  combinations).  We note that a successful choice of one system of independent  variables or ano ther  

is of fundamental  importance. This choice frequently makes it possible not only to give a pictorial representat ion 

of chemisorption (distributions of concentrations, dependences of dimensionless fluxes on length) in the general 

case, but also to obtain simple conditions for the implementation of the known absorption regimes: reactions of 

pseudofirst order,  instantaneous and slow chemical reactions, conditions under  which resistance to t ransfer  is 

concentrated in a gas, liquid, etc. [ 1 ]. The  determination of the conditions for the existence of such limiting regimes 

is the main objective of the present work. In these cases, the calculation procedure for chemisorbers is simplified 

greatly, since the functions I(x) are usually described by convenient analytical formulas. Undoubtedly ,  these 

formulas depend on the regimes of the motion of phases (velocity distributions);  however, the specific form of the 

dimensionless functions Ug(yg) and Uliq(Yli q) (since, by definition, all these functions are of the order  of unity) 

cannot apparently affect the realization of the above-mentioned limiting absorption regimes on condition that all 

the transfer  coefficients correspond to the motion regime under  consideration. Considering the aforegoing, we 

carried out a theoretical investigation of the problem for the case Ug = Uliq = 1 (pistonlike phase motion usually 

typical for turbulent  regimes). This considerably simplifies the mathematical calculations, not distorting the essence 

of the phenomena.  

In [1 ], to investigate two-phase chemisorpt ion with a second-order  irreversible chemical  reaction,  a 

rectangular coordinate system of the hydrodynamic  variables XN-- YN was introduced, where XN = log eN and YN 
= --log (eflN). The  term "hydrodynamic"  indicates that the corresponding quantit ies depend on the loads of 

contacting phases. The  hydrodynamic  variables for absorption X = log e, Y = - l o g  eft, and XN and YN form the 

linear relationships XN = X+log  N, YN = Y--log N. Graphically this corresponds to the situation where  the planes 

204 



A 8 

17' -/ 
Fig. 1. Hydrodynamic  planes X N -  YN and X -  K 

( X -  F) and (XN-- YN) are displaced from each other  by an amount  log N (see Fig. 1). The  aim of our investigation 

is to obtain a solution of (6)-(10) at any  point of the X N -  YN plane. Below, we will show that for this purpose it is 

sufficient to obtain a solution only at the inner points of the square ABCD (see Fig. 1). It is easy to see that for 

N >> 1 this square is located in the upper-left  corner  of the absorption hydrodynamic  plane X - Y ,  where the 

inequalities X _< - 1 and Y >_ 1 (e << 1, eft << 1) are satisfied. It is known that in this region the diffusion resistance 
cabs=  1 at a n y x  for physical absorption is concentrated in the liquid phase, whereas the surface concentration is vg s 

[8 ]. Formally,  when x ~ 0, chemical interaction can be neglected since the process of absorption proceeds due to 

physical absorption (generally this occurs when a2x ' _< 1) [4 ]. We can show that in the case considered (N >> 1) 

the conditions Cgs -- 1 and Cs -- 0 are retained even at considerable distances from the inlet (a2x >> 1). This  means 

that in this region the regime of a fast chemical reaction is realized with the resistance to chemisorption in the 

liquid phase, with the dimensionless diffusion fluxes being equal to 

Z =xf ~ d x , = P l i q X , ,  I = P g x " .  
o OYliq 

(13) 

In what follows, this region will be called the initial segment of chemisorption. 

T h e  investigations showed that  the solution of the problem of two-phase chemisorpt ion (6)-(10)  is 

qualitatively different  depending on to which of the four quadrants  of the hydrodynamic  plane (to the first 

XN >-- O, YN >-- 0; second XN <-- O, YN >- 0; third XN --< 0, YN <-- O, or fourth XN > 0, YN <- O) the considered point 

XN, YN belongs. In view of the variety of the regimes observed, it does not appear  possible to present  in one 

article the results of investigation for all of the four quadrants.  Previously, in [1 ] the solution for points of the 

second quadran t ,  i.e.,  at small values of the chemisorp t ion  capaci ty  (eN <_ 1, eflN <_ 1), was inves t iga ted  

theore t ica l ly .  In the present  work, we s tudy  the opposite case at large chemisorp t ion  capacit ies (eN >_ 1, 
eflN >_ 1), i.e., the solution in the fourth quadrant  of the hydrodynamic  plane XN--YN (XN >-- O, YN <-- O) (see 

Fig. I). 

As noted above, at any point of the hydrodynamic  plane XN, YN the solution should generally depend also 

on two other  dimensionless parameters.  Usually, they are selected in such a way that they could contain the 

chemical reaction constant k as a multiplier. Hereafter ,  we will call such parameters  kinetic. For example,  for the 

points of the second quadrant  [1 ], such parameters were taken to be Pliq and a. It was shown that the influence 

of a on the solution is insignificant, i.e., of no fundamental  importance, because it is manifested only through the 

multiplier tanh (a~/1 - Cs(x ) / t anh  Ca) in boundary conditions (7), (8) which is always of the order  of unity.  The  

qualitative picture of the behavior of the solution (Y, I, Cgs, Cs) is mainly determined by two hydrodynamic  

parameters XN, YN and by one kinetic parameter  Pliq- Similarly, as will be shown below, the solution in the fourth 
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quadrant depends basically on the position of the point XN, YN on the hydrodynamic  plane and,  in addition, on 

the magnitude of the kinetic parameter  Pg (Eq. (11)). 

As is seen from Fig. 1, in the fourth quadrant the relationship between the characteristic lengths RPeg and 

hPeliq can be arbitrary:  for the points that lie above the bisectrix AC, the inequality fl < 1 is satisfied, while for 

those that lie below it, the inequality fl > 1 holds. Since, in the region considered,  X N > O, according to the general 

theory [1 ] it is convenient to select the parameter  I(x) as a goal function for calculating the length of the packing 

device. 

Before proceeding to the general investigation of problem (6)-(10) ,  we will obtain a formal solution for two 

important limiting cases: long and short channels. 

Solution for Long Channels. Suppose the length of the channel is so large that even over the initial portion 

of chemisorption (Cgs = 1, Cs = 0) the diffusion layers in the gaseous and liquid phases intergrow completely. From 

material balance (12) for the surface concentrations we obtain 

I Cg Cg s =  1 - I  (14) C = C s - e'N ' = 

From the general s tatement of Eqs. (6)-(10) we can show that the function I(Z) can be found from the 

solution of the ordinary differential equation 

d--Z= ~ t anh (a )  [1 - I ( Z ) ] ,  I ( 0 )  = 0 ,  

where Z = Pgx'. Hereafter ,  we will denote this solution by 10(a, XN, Z). The  function Io(Z) is two-parametric;  it 

depends on the determining parameters  XN and a. Equation (IS) admits separation of variables and can be solved 

in an implicit form for I0 in quadratures.  For large values of a (a >> 1) we can obtain an analytical relation [9 ]: 

( /o),J, ( ,),J, 1 - ~ - - ~  = 1 - ~ - - ~  

1 + eN (I-(I-e-~)I/2) 2 e x p  ( - ( I - ~ N ) I / 2 Z )  

l - e N ( I -  ( I - ~ ) ' / X ) X e x p  (-  ( I - ~ ) t / X Z )  
(16) 

Similarly, for small values of a, we obtain 

I eN-  1 ] 
1 - exp - ~ Z 

= (a << 1).  

1 - exp eN eN 

(17) 

The  functions Io(Z) are monotonic; moreover, approximation (13) (I 0 = Z) is satisfied when Z << 1, and 

the function I 0 ~ 1 when Z >> 1. It can be shown that the differences between relations (16) and (17) at any  values 

of eN do not exceed 10~o, i.e., as expected, the influence of the parameter  a on the solution lo(a, XN, Z) is 

insignificant. In this case, the absorption process is said to proceed in the kinetic regime, since the concentrat ion 

of carbamine in the liquid in the lateral direction does not change. 

Solution .for Short Channels. In this case, it can be considered that diffusional boundary  layers exist in 

both phases. After the introduction of the variables Yg.n, Yn, and Z instead of yg, Yliq, and x" according to the formulas 

1 ~ (18) 1 --yg = ~ Y g . n ,  1 -Yliq = Yn, Z =  P~x" 

206 



we will t ransform dimensionless problem (6)-(10) as 

oq 
Ug = = 2 

OZ OYg.n 

OYg.n) 

= - e [3----N X/1 - C s ( Z )  
S 

at yg,a =yn = O; 

Uliq 
OC O2C 

2 ' 
OZ 0y n 

lan.h (a  ~/ l  C~ ( Z ) )  Cg  s 
tanh (a) 

tanh (a x/l - C s ( Z ) )  

tanh (a ) '  Cg s 

(19) 

GO . = °  

(20) 

C g = l ,  C = 0  

(21) 

' Ygn ~ oo) , (22) 

(23) 

at Z = 0. Formally,  problem (19)-(22) is obtained from (6)-(10) when Pg = ~o. The equation of material balance 

in the new variables takes the form 

(24) I n -  Ug(1 - Cg) dyg.n" = e f l N f  Vii q C d y  n = (e f iN)  Z n ,  
0 o 

where physically In and E n are also dimensionless fluxes in the gas and liquid, respectively. 

As is seen,  the solut ion of problem (19)- (23)  depends  only  on two de te rmin ing  pa rame te r s ,  i .e. ,  

hydrodynamic  YN and chemisorption a. Now, we will obtain certain analytical formulas for the initial segment,  

where the conditions Cs(Z) << 1 and Cgs -- 1 are satisfied. Taking into account the fact that in short channels  

diffusional boundary  layers exist in the gas and liquid, we will seek the solution of the problem in the form 

1 - Cg = ( x l ) I / 2 f l / 2  (r/g) ( -  P g ) / / l / 2  (0) + . . . .  

C "" ( X ' ) I / 2 1 1  /2  (r/liq) (-- P l i q ) / f l / 2  (0) + ... 

where r/g and r/liq are the self-similar variables 

r/g = (1 -- y g ) / ~ f f r  = Y g . n / V ~  ' r/liq = (1 -- Yl iq) /V~x'  = y n / x / Z ,  

and the prime denotes differentiation of the function f(r/) with respect to the variable 7/. 

Substituting expansion (26) into t ransfer  equation (19), for f l /2( r / ) ,  we obtain ll  ] 

f t / 2  (r/) --- exp - - exp - dr .  
1/ 

Consequently,  the surface concentrat ions  Cgs and Cs vary over the initial segment in the following way: 

(25) 

(26) 
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1 2 v ~  
Cg s =  1 - 2 4 2 ,  C s =  ( z < < l ) .  (27) 

As is seen,  the funct ion Cgs(Z) depends  only sl ightly on the parameters  YN a n d  a and  decreases  

monotonically. It can be assumed that 

Cg s * 0 for Z >> 1 , (28) 

The latter means that in the case of large-length Z the resistance to chemisorption is completely concentrated in 

the gas. In this case, the distribution of concentrations in the phases is known 14 ]: 

1 (29) Cg o erf (r/g), C * e - ~  erfc (r/liq) - 

In particular, at the phase interface 

I c s o ~ - ~ z  1. (3o) 

It can be easily shown that the asymptotic functions In(Z) for large and small values of Z are equal to 

In 

Z 

2 

v~- 

(Z << 1 ) ,  

¢-Z (z>> I). 
(31) 

Formally,  statements (15) and (19)-(23) should hold at any point XN, YN irrespective of its position in 

the fourth quadrant  for Pg ~ 0 and P$ ~ ~ ,  respectively. 

Below, by means of theoretical investigations of the solutions of general problem (6)-(10) for different 

regions of the fourth quadrant,  we will obtain more exact conditions for the applicability of the solutions for short 

and long channels,  as well as of other analytical formulas. This will make it possible to visually represent  the 

solution in this quadrant  and subsequently to construct a procedure for calculating two-phase chemisorplion for 

arbi trary values of physicochemical, kinetic, and geometric quantities. 

Investigation of the Solution forfl < 1 (the Region above the Straight Line AC). In this region the inequality 

RPeg <__ hPeliq is satisfied between the characteristic dimensions in the gaseous (RPeg) and liquid (hPeiiq) phases. 

Consequently,  a boundary  layer in the gas grows more rapidly than in the liquid. When Pg < f12, all the conditions 

for appl icabi l i ty  of the kinetic regime (Eqs. (14) and (15)) are sat isf ied,  even over  the initial  s t re tch  of 

chemisorption. In particular, the function I(Z) can be obtained analytically (Eqs. (16) and (17)). With a fur ther  

increase in Pg (462 <__ pg < 1), a diffusional boundary layer is observed over the initial segment of chemisorpt ion in 

the liquid phase. In this case, for the distribution of the concentration C approximation (26) is valid. Th en  

1 =  PgX = Z ,  Cg s =  1 - 1 ,  (32) 

Cs = Pliq, (x , ) l /2  = x/-~g __2 v ~ ,  

-- f l / 2  e f l N  V~ 

(33) 

Considering that I < 1, we may assume that I = 1 and Cg s ~ 0 when Z = Pgx" >-- 1. Therefore ,  from the 

balance equation we have C ~ l / e N  < 1. This  means that within the region Z > 1 the dis t r ibut ion of Cg is 

determined from formulas (29), while C can be found from the following one-phase problem: 
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OC o2C 
B 

' 2 '~ 

Ox 2Yli q 

1 1 ( 3 4 )  
f C dyli q - 
o eN 

Solution (34) for x' < I exists in the form [1 ] 

C = 
exp ( -  r /~q /4 )  

~U v~ x~x' 
(35) 

In particular,  Cs changes as follows: 

~/P~ 1 1 
C s = (Z > 1, x < 1). (36) 

eflN v~  x/-Z 

C o m p a r i n g  fo rmulas  (33) and  (36), ob ta ined  at small and  large values of Z, we conclude that  the 

concentrat ion of carbamine  Cs in the region Z - 1 passes through the max imum of the order  of v~g/eflN, which 

increases together  with the pa ramete r  Pg. For x'  > 1, when boundary  layers grow through both phases  

1 
C s ~ ~-~ < 1 . (37) 

When Pg >> 1, the diffusional boundary  layers are observed over the initial segment  of chemisorpt ion in 

both phases.  In this case,  the solution for x" < 1 is de termined by formulas (25 ) - (3 l ) ,  where p2x" = Z. Over the 

finite segment  1 < Z, x" < 1 (1/P 2 < x" < 1) the function Cs(Z) is equal to the max imum value l/eflN. For  

x" > 1, where a boundary  layer  grows in the gas, approximat ions  (36) and (37) are  valid. In this region, the 

concentrat ion Cs decreases from the m ax i m um  value 1/ef lN to the minimum value 1 / e N  (when x'  > 1). 

The  two-phase problem of chemisorption (Eqs. (6)-(10)) is great ly simplified when eN >> I. It can be 

assumed in this case that  the pa rame te r  fl ~ 0. Physically,  this means  that  there always exist diffusional boundary  

layers in the liquid phase  and,  consequently,  the s ta tement  of problem (6)-(10) can be reduced to the following: 

OCg 02C~, OC O2C 
Ug " = 2 ' Uliq " -  2 ' 

OX Oyg Ox OYliq. n 

(38) 

at yg = 1, Yliq.n = 0; 

at yg = 0, Yliq.n ~ oo, respectively; 

( OC ] Pg t a n h ( a ~ l - C  s ( x ' ) ) C  , 
= - eflN x/ 1 - C s (x) tanh (a) gs 

dCg = tanh (a X/1 - C s ( x ) - )  
Oyg) - Pg ~/1 - C s (x) tanh (a) Cgs (39) 

3yg) = 0 ,  = 0 (40) 

C g = l ,  c = 0  (41) 

at Xg = O, where Yliq.n = (1 - ~iq)~ft. 
Problem (38)-(41) docs not depend on XN. We will denote the dimensionless diffusion flux 1 in the case 

considered by Iv(Pg, YN, a, Z). We can show that approximations (32)-(36) follow from sta tement  (38)-(41) when 
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Pg << 1. Since, in the fourth quadrant,  eflN > 1, it is easy to see that Cs << 1, and, consequently,  from Eqs. (38)- 

(41) for Iy we obtain 

I y =  1 - e x p ( - Z )  (Pg<< 1). (42) 

This formula coincides with Eqs. (16) and (17) for eN >> 1. 

When Pg >> 1, problem (38)-(41) over the segment x" is equivalent to problem (19)-(23).  For this, it is 

sufficient to subs t i tu te  the following variables: x" = Z / P  2, 1 - y g  = Yg.n/Pg,  Yliq.n = Y n / P g  • In this  case,  

approximations (25)-(31) are satisfied, while for small and large values of Z approximation (31) is valid. We note 

that  when Z >> 1 (x" >> l / P ~ ) ,  the res is tance  to t ransfe r  is concent ra ted  in the gaseous phase (Cgs = 0) ;  

consequently, Iy coincides with the solution of the single-phase diffusion problem with the zero boundary  condition 

Cgs = 0 [2 ]: 

~, 2 n 2 " (43) Ioo = 1 - 2 exp 1 -  (n + 1 / 2 ) 2 x  ] 
n=O sr ( n +  1/2)  2 

General ly,  the problem of the applicability of a simplified statement (Eqs. (38)-(41))  can be solved only 

as a result of the numerical calculation of general problem (6)-(10) and its comparison with solution (38)-(41).  

However, even on the basis of the results obtained above, it is possible to assume that on the hydrodynamic  plane 

in the region located to the right of the vertical straight lines XN = const >> 1, the equality 1 = Iy is satisfied at 

any values of a and Pg (this occurs practically to the right of the straight line BC (X N > 1)) (see Fig. 1). 

Note that for fl < 1 in the region of the hydrodynamic plane located above AC, the surface concentrat ion 

of carbamine has a complex bell-shaped form, with its maximum value being smaller than l / e f l N  < 1 irrespective 

of the quantities a and P$. 

Investigation of the Solution for fl > I (the Region below the Straight Line AC). In this region, the inequality 

hPeliq < RPeg is satisfied; consequently,  the boundary layer grows through the liquid more rapidly than in the gas. 

With such a relationship between the characteristic lengths, when Pg < 1, the limiting regime of absorption (Eqs. 

(14), (15)) is evidently realized at which I = I0(X N, a, Z),  where Z = Pgx". Then  over the ent ire  segment  of 

chemisorption considered (0 < I < 1) the lateral change in the concentration in both phases can be neglected. As 

the factor Pg (1 < Pg < fl) increases, the kinetic regime of absorption is retained,  i.e., formulas (14) remain valid 

for the liquid phase. However, in the gaseous phase (at least, at the lengths x" < 1) one observes a boundary  layer; 

consequently,  approximations (25), (27), and (29) are valid for Cg. Note that in the region 1/p2g < x" < 1 formula 

(24) for I virtually coincides with Eq. (43) (see Eq. (31)). Thus,  when x" > 1/P~, for Cs (since x' > 1) we obtain 

an analytical formula: 

c~ (x') ~ I® (x')/eN. ( 4 4 )  

And, finally, we will investigate the solution for Pg > ft. In this case, over the segment x' < 1 (x" < 1/f12), 

where the boundary  layer  exists in both phases, Eqs. (19)-(23) are valid, in particular, solutions (25)-(31) .  When 

x'> 1/P~ the surface concentration Cs(x") approaches the constant value I/eflN and virtually does not change up 

to x' < 1. This value, however, is not an asymptote for Cs(x"), since subsequently (x' > 1), when the absorpt ion 

regime becomes kinetic, the value of Cs(x) increases by law (44). In this case C = C s. 

Thus,  in the region located below the straight line AC, the surface concentrat ion Cs always increases and 

general ly  is a s tep-funct ion.  Except ions are the points in the immediate  vicinity of AC (/3 = 1), where  the 

in te rmedia te  (1/eflN) and  a s y m p t o t i c  (1 /eN)  va lues  v i r tua l ly  co inc ide .  In the l a t t e r  case ,  Cs increases  

monotonically. Its maximum value is equal to l / e N  < 1. 
In the region fl >> 1, the two-phase chemisorption problem (Eqs. (6)-(10))  is simplified if the parameter  

eflN >> 1. It can be assumed in this case that f12 ~ ao (Fig. 1). This means that hPeli q ~ 0, i.e., at any  values of 

x and Pg chemisorption proceeds in the kinetic regime (C = Cs). From the equation of material balance we obtain 
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C = C s = I / e N .  (45) 

Substituting relation (45) into Eqs. (6)-(10) for the concentrat ion in the gaseous phase, we obtain the 

following problem: 

oCg = .o2C~ (46) 
2 ' 

Ox Oyg 

OYg)s - Pg ~/1 - I / e N  tanh (a q l - I / e N  ) 
= tanh ~ 5  Cgs' 

(47) 

Oyg) = 0  at y g = 0 ,  C g =  1 at x = 0 .  

The  solution of problem (46), (47) does not depend on YN. In this case, we will denote the dimensionless 

diffusion flux by I x ( P g  XN,  a, x"). We can show that for small Pg < 1 the function I x  * Io(XN,  a, Z ) ,  where Z = 

Pgx'. Approximation (14) is satisfied for the concentration in the gas. In the other  limiting case Pg >> 1, the equality 

I X = lo(oo, a, Z ) / P g  is satisfied over the segment x" << 1. At distances from the entry of the gas into the apparatus 

xg >_ 1 / P  i ,  the last formula goes over continuously into Eq. (43) ( I x  * I~(x~g)). Since the value of eflN is constant 

on the horizontal straight lines YN = const, we may assume that I = I x  in the region of the hydrodynamic  plane 

located below the straight line CD (YN = - 1 )  (see Fig. 1). 

Now, we shall carry out an analysis of the theoretical solutions obtained above for different regions of the 

hydrodynamic  plane XN--  YN. First of all, we shall consider the concentration of CO2 at the phase interface Cgs(X). 

A characteristic feature of the solution for the problem of chemisorption in the fourth quadrant  is the monotonic 

dependence of Cgs on the length. At any point XN, YN the function Cgs decreases from unity to zero over a certain 

segment l~, whose order  of magnitude depends on Pg: l" N 1 /Pg  if Pg < l,  and l" - 1 / P i  if Pg > 1. Proceeding 

from the form of t ransfer  equation (6), it can be concluded that the dimensionless flux I (x )  (the basic calculating 

characteristic of a mass- t ransfer  device) is a monotonically increasing function. The  values of this function at small, 

x" _< l ' ,  and large, x" >_ l ' ,  values of x" can be obtained analytically, i.e., from formulas (13) and (43) (these are 

the regimes of a fast chemical reaction with resistance to t ransfer  in the liquid phase and of an instantaneous 

chemical reaction, respectively). 

As for Cs(x), the shape of this curve depends on the relationship between the characteristic dimensions 

hPeuq and RPeg. When fl > 1 (the region below AC), the function Cs(x) is monotonically increasing; it changes 

from zero to 1 / e N  < 1. Whenf l  < 1 (the region above AC), the function Cs(x) is more complex - it is bell-shaped; 

however, its maximum value does not exceed 1/eflN < 1. On the basis of the analytical results obtained above, we 

may conclude that generally the maximum value that can be attained by C s in the fourth quadrant  is equal to 

C s = max < I (48) 
e f l N '  ¢ - " 

The  latter means that inside of the fourth quadrant one cannot realize the regime of instantaneous chemical reaction 

when Cs(x) = 1 (i.e., the concentration of [RNH2 ] on the surface is equal to zero; see Eq. (2)),  whereas the factor 

of chemical reaction acceleration is ap _~ N (i.e., at the maximum).  This is the feature that distinguishes the solution 

in the considered region of the hydrodynamic  plane from the corresponding solution for the second quadrant  [ I ], 

where the above-indicated regime was always present, beginning from a certain length x. However, at the inner 

points of the second quadrant  it was impossible to realize the regime of maximum absorption, because Cgs satisfied 

the inequality Cgs > 0 at any value of x (i.e., [COz] at the interface from the side of the gas was always above 

zero). 
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From relation (48), it follows that at large values of the hydrodynamic  parameters (eN >> 1, eflN >> 1) the 

concentration of carbamine at the phase interface satisfies the inequality Cs(x)<< 1. Consequently,  the solution of 

general problem (6)-(10) is simplified considerably, since the latter is reduced to a single-phase problem: 

Ug = , 
Off' Oy~ 

_ -  Oyg) -PgCg  at y g =  1, (49) 

OCg] = 0  at y g = O ,  C g =  1 at x = 0 .  
Oyg ) 

In this case, the interaction between CO2 and amine represents a chemical reaction of the pseudofirst  order,  

since the amine is virtually not consumed ( [RNHz ] -- N' in any section of the channel) .  When x' >> 1 / a  2, problem 

(49) coincides with the asymptotic  approximation for two-phase chemisorption with a f i r s t -order  irreversible 

chemical reaction [5 ]; its solution depends only on the parameter  Pg and it can be easily tabulated.  In this case, 

we denote the dimensionless diffusion flux by 11 (x). This function for small and large values of Pg was obtained 

analytically in [5, 6 ], respectively: 

I 1 = 

1 - e x p ( - Z )  at eg<<l,  

2 v ~  - (1 - exp ( -  Z)) erfc (Z 1/2) 
v%- 

at Pg >> 1. 

(50) 

Confining ourselves to the 1 0 ~  accuracy, we can say that approximation (49) takes place in the region of 

the hydrodynamic  plane XN-- YN located in the lower-right corner in Fig. I (X N >_ 1, YN -< -- 1). We can easily see 

that limiting problems (38)-(41) with eflN >> 1 and problems (46), (47) with eN _> 1 are reduced to Eq. (49). 

C O N C L U S I O N S  

1. The problem of two-phase absorption of a component (for example, CO2) by a liquid phase in the case 

of the second-order  chemical reaction depends on many variables, such as physicochemical (Dg, Pliq . . . .  ), geometric 

(1, R . . . .  ), and kinetic (k). In order  to decrease the number  of independent  variables, the problem is investigated 

in dimensionless form. Two hydrodynamic  (XN, YN) and two chemisorption (a, Pg) parameters  are introduced as 

dimensionless quantities. 

2. The  main objective of the work was to obtain a clear picture of the distribution of concentrat ions in both 

phases at arbi t rary values of the determining variables. This made it possible to find conditions for the applicability 

of the following absorption regimes, well known from the literature: pseudo-f i rs t -order  chemical reaction (the 

concen t ra t ion  of an abso rbe r  is not  consumed) ;  the res i s tance  to chemisorp t ion  is c o n c e n t r a t e d  in a gas 

(C'gs << CO) or in a liquid (Ciiq s _.- kC0); kinetic regime where the concentrat ion of an absorber  is constant  across 

the liquid film; regime of instantaneous chemical reaction in which the concentrat ion of an absorber  at the phase 

in te r face  is equal  to zero ,  while the  factor  of the chemica l - reac t ion  acce lera t ion  (4)) is at  a m a x i m u m ,  

• -- N>> 1. 

3. The conditions for the realization of the above regimes (in dimensionless variables) are obviously inde- 

pendent of the particular form of the velocity distribution of the phases (motion regimes); it is only necessary in 

these dimensionless variables to substitute the corresponding values of the t ransfer  coefficients, Dg and Dli q- 

4. In order  to simplify the mathematical calculations, the piston motion of phases is s tudied,  which is typical 

for turbulent regimes of motion. 
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5. The  problem is investigated for an important practical case in which the chemical capacity of the liquid 

phase is large, N' >> kC o. 
6. As a result of the theoretical analysis carried out, in the fourth quadrant  of the hydrodynamic  plane 

XN-- YN (Fig. 1) a characteristic length of a mass-transfer  device/chem is found, whose magnitude depends mainly 

on the chemisorption parameter  Pg. It is shown that in a two-phase system with l <</chem, a regime of fast chemical 

react ion is real ized on the condi t ion that  the resis tance to mass exchange is exhibi ted in the liquid phase 

(C'g = Co). In the other  limiting case (l >>/chem), the diffusion resistance is concentrated in the gas (Cgs = 0). 

7. General ly ,  in the fourth quadrant  the surface concentration Cgs decreases monotonically from unity to 

zero at the length l -/chern- 
8. As for the surface concentration of the reaction product Cs, in the general case it is a complex function 

of the length; inside the fourth quadrant  it satisfies the inequality C s < 1. This means that in the region of the 

hydrodynamic  plane considered, the regime of instantaneous chemical reaction ( [RNH2 ]s = 0) is impossible except 

for the points that belong to the boundary  of this quadrant  (XN -- 0 or YN = 0). 
9. The  conditions for realization of the pseudo-firs t-order  reaction regime are found for which [RNH2 ]s 

= N'. This regime occurs at ra ther  large values of the chemisorption capacities of the phases (virtually, XN >- 1, 
YN >-- 1); see the lower-fight corner  in Fig. 1. 

lO. Using the theore t ica l  solut ions ob ta ined ,  it is possible to develop a p rocedure  for  calculat ing 

dimensionless fluxes I(Z) at arbi t rary  values of the determining quantities (Dg, Dliq, l, R . . . .  ) in terms of the 

dimensionless parameters  XN, YN, P, a. In this case, it is sufficient to perform numerical calculations in the limited 

region of the fourth quadrant:  0 _< XN <-- 1, -- 1 <_ YN <-- O. Beyond this region the problem is simplified (the number  

of dimensionless complexes decreases) ,  and the dimensionless flux I(Z) coincides with one of the limiting solutions 

Ix,  Iy, or I 1. Such a procedure allows one to calculate mass-exchange devices without resorting to a computer.  

N O T A T I O N  

t 

C'g, Cliq, C', concentrat ions of CO2 in a gas and in water  and of carbamine in an aqueous solution, 

mole/l i ter;  Cg, Cliq, C, same in dimensionless form; D, diffusion coefficient of particles, m2/sec; k, Henry  constant 

for CO2; k, constant of reaction rate between CO2 and amine, l i ter /mole-see;  l, channel length, m; /liq = l/hPeliq, 
lg -~ l /RPeg,  dimensionless lengths; N', inlet concentration of amine, mole/l i ter;  R, h, channel  half-width and liquid 

film thickness, m; x, y, Cartesian coordinate system, m; x', Yliq, dimensionless Cartesian coordinates in liquid; x", 

yg, dimensionless Cartesian coordinates in gas; U', phase velocity, m/see ;  U = U'/U' ,  dimensionless phase velocity; 

Peg = R[J'g/Dg, Peliq -- h-Uiiq/Dliq, Peclet numbers for gas and liquid; a, N, e, fl, X N = log eN, YN = --log eNfl,_ 
dimensionless parameters;  Cg, Cliq, mean-mass  dimensionless concentrations of CO2 in gas and liquid; I, Z = C, 

dimensionless diffusion fluxes in gas and liquid; cosh (x), tanh (x), hyperbolic cosine and tangent; err (x), erfc = 

1 - erf (x), e r ror  functions. Subscripts: g, gas; liq, liquid; s, phase interface; 0, inlet section of channel;  n, new 

coordinates. 
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